Multi-Label Learning with Label Enhancement
نویسندگان
چکیده
Multi-label learning deals with training instances associated with multiple labels. Many common multi-label algorithms are to treat each label in a crisp manner, being either relevant or irrelevant to an instance, and such label can be called logical label. In contrast, we assume that there is a vector of numerical label behind each multi-label instance, and the numerical label can be treated as the indicator to judge whether the corresponding label is relevant or irrelevant to the instance. The approach we are proposing transforms multi-label problem into regression problem about numerical label. In order to explore the numerical label, one way is to extend the label space to a Euclidean space by mining the hidden label importance from the training examples. Such process of transforming logical labels into numerical labels is called Label Enhancement. Besides, we give three assumptions for numerical label of multi-label instance in this paper. Based on this, we propose an effective multi-label learning framework called MLL-LE, ie. Multi-Label Learning with Label Enhancement, which incorporates the regression loss and the three assumptions into a unified framework. Extensive experiments validate the effectiveness of MLL-LE framework.
منابع مشابه
MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملMulti-label Image Classification with A Probabilistic Label Enhancement Model
In this paper, we present a novel probabilistic label enhancement model to tackle multi-label image classification problem. Recognizing multiple objects in images is a challenging problem due to label sparsity, appearance variations of the objects and occlusions. We propose to tackle these difficulties from a novel perspective by constructing auxiliary labels in the output space. Our idea is to...
متن کاملAn Effective Approach for Robust Metric Learning in the Presence of Label Noise
Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...
متن کاملApplication of pH Indicator Label Based on Beetroot Color for Determination of Milk Freshness
Introduction: Applying of a new indicator in food packaging can be effective to inform consumers about the freshness and quality of the products. Materials and Methods: In the current study, a new milk freshness label was investigated containing beetroot color and multi layers of polystyrene. The label characteristics were investigated by estimating color number, release test, and scanning ele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1706.08323 شماره
صفحات -
تاریخ انتشار 2017